1

{NASA-CR-181596)

Appendix B

DATA MAPPING AND ROTATION FUNCTIONS
FOR THE MASSIVELY PARALLEL PROCESSOR

Anthony P. Reeves and Cristina H. Francfort de Sellos Moura

School of Electrical Engineering

WAF S~ 403
p7 047
-6/ - e -
2272V
("

Cornell University

The Massively Purailel Processor is a SIMD computer with
16384 processing elements connected in 2 128 x 128 mesh, Such
an organization is ideal for problems which involve near neighvor
iterations, but for other proviems which invoive other data map~
pings it is often considered to be ineficient. Lo this paper a general
algorithm for implemsating arbitrary permutations and mappings
on such systems is presented. Efficieat matrix rotation- aigorithms
vased on this permuttion fuactioa are aiso di d. Nearest
aeighbor, bilinear interpolation and bicubic spline interpoiation
schemss ars considered. Thess algorithms are extended for tie case
when ths matrix to be processed is larger than the parallel
hardware dimessions.

INTRODUCTION

A convenieat Way to iuterconnect a very large aumber of
gmmhhamdimmﬁnnﬂgﬁdormmmnmmmo-
tion arrangement is very simpia to implement, bas a cost which
igcreases linearly with the number of and is very suit-
able for a large number of algorithms. Ag example of such a sys-
tem is the Massively Parallsl Processor (1] which involves 16334
bit-serial procemors organized in 2 128 x 128 The MPP is pro-
gmndinamghlswlhngugoamdpmndhm[ﬂ

The only permutation functon which is directly imple-
meated by the VPP is the near neighbor rutate (or shifth The
direction of the rotation may be in any of the four cardiaal direc-
tions, [n Parailel Pascal the main permutation functions are
multi-slement rotate and shift functionS other permutations are
built on thase primitives

The rotats function takes as ts the army to be
shjftedandtdisphmntforunhoithoamy:di.mcﬂm For
emnpueonn'dutomdimmimﬂmnyaspc‘xﬁadby

a: array [O.n] of integers

is equivaient to
fori:=0 toa do

i} = G + 5) mod (o + 1)}

The roution utilizes the toroidal end around ecge connections of
the mesh. The shift function is similar except that the mesh is
not :oroidaily connectad and zeroes are shifted into eiements at the
:dge of the array; therefore, the shift function is oot 3 permuta-
xon function in the strict sense. The concept of the rotate and
shift functions extend ¢ n dimensionx on the MPP the last two
dimensions of the array correspond to the parailel tardware
dimensions and are executed in parallel, higher dimension opera-
:jons are implemented (n serial. The cost of the rotate function is
dependent on the distance rotated. [t also depeads on the size of
the dawa ¢iements to be permuted,

Taers s 30 sunpie Kaown way 0 Jecompose an irditrary
permutation into a minimal sequence of operations on an MPP lke
system. [n this paper a heuristic algorithm is described. The aigo-

(Cornell Univ.) 8 p

Ith_:n. New York 14353

DATA MAPPING AND KOTATION

FUNCTIONS FOR THE MAS d
PROCEL S SIVELY PARALLEL

N

rithm exploits the local consistency of data which occurs in many

practical applications. An efecuve application of this aigorithm t0

matrix rotation is presented. For soms permutations, such as the
perfect shuifle, which do not directly exhibit this coasistency pro-
perty, the algorithm may not be very effective.

For many applications the physical dimensions of the parailel
nardware are smaller than the dimensions of the array to be pro-
cessed. [this cass the data array is processed as a set of blocks. An
extension of the permutation algorithm 10.deal with this atustion
is discussed.

mpmgrlmwugoﬁmmenmplugiminthhpnpuua
the Parallel Pascal notation. This notation iavolves thres exten-
sions to standard Pascal

1) espressions invoiving Whole arTays are permitted;

2) the whers - do - otherwise control statement is available.
This seatement is 4 parailel version of ths if - then - else
statement; the control expression must evaluats to a Boolean
aray. All aray asi t3 within the coptrolled state-
ments must be conformable with the control array aad are
masked by it

1) the functions any and min are the array reduction functions
or and minimum respectively.

MATRIX PERMUTATIONS

The mawix permumtion algorithm presented in this paper is
a general algorithm for implementing arbitrary permutations of a
«wo dimensionsl Matrix on mesh connected parailel processors It
is also capable of performing any onto mapping. It uses & heuristic
approech to reduce the execution time.

The perrutation of 3 MACTIX a is specified by two coordinate
matrices ¢ and ~ which have simiiar dimensions to 4 The per-
@uted matrix 5 also has the same dimensions as a. For 3 mawix
eiement b{i,j] the corresponding elements iil and ci.j] specify the
row and column indices respectiveiy of where the related element
of a is located. That is, the permutatioa is specified 0y -

i = ol AL i
More formally, the daca arrays involved in the permutat...
are specified by:
ab : array {l.arow,l.acol] of dauw;
{where data is any base type}
< array {l.arow,l acol} of l.arows
¢ : array {l.arow,l.oc0l] of l-ncol
In order to computs the relative distancs that tae data must
e moved, two pirel element idenufying matrices idr aad idc are
grecomputed. They contain the foilowing:
driyj =t
ddi,j =35
for all Lj

N88-70125

, Unclas
00/61 0114136

The relative distances to be moved are then specified by

rr = (r-idr) mod nrow;
re¢ = (¢c-idc) mod ncol;
ln a permutation ths data may be shifted in any of the four
quadrants in order 0 reach a2 specified destination. However, in
the following algorithms oaly positive data shifts are considered,
Le. in the up and left directions. The other thres quadrants are
covered by using modulo arithmetic for shift distance calculations
and implementing data movement with the rotation function
which utilizes the end around mesh connections. We have investi-
gated a modified heuristic algorithm which checks ail four qua-
drants and moves in the optimal direction. Fewer data shift opera-
rions are required but the overhead due to checking alternative
directions is significantly higher.

A simple permutation algorithm

A simpie naive algorithm to achieve an arbitrary permuta-
tion is to slide a over ail the possible positions of b, assigning the
specified elements of a t0 each eiement of & when they are in the
correct position.

for = 1 to arow do
for j= 1 to ncol do

in

where (7 = i) and (rc = j) do
X

a = rouatela, O, 1%

end;
a = rotate(e, 1, 0%

This algorithm invelves O(n®) operations for an 8 x n
MAtriX.

The Heuristic algorithm

In many permutations which occur in practics thers are weil
defined patterns for the dath For exampie, near neighbor shifts are
crivial with complexity O(1), perfect shufles can be implemaated
in O(n) time. The heuristic algorithm attemprs to taks adventuge
of the fact that r» and rc will be the mme or similar for many
slements This is perticularly true for operations such as matrix
warping.

The algorithm first slides (rotates) 2 29 many locations up and
left a3 pomsible such that future backiracking will oot be neces-
sary. If any eiement of a is correctly positioned over 5 (ia (r=
0) and (re = 0)) then 5 is updatsd. Otherwise, azr, Which is a copy
of the current version of a, is slid in the upwards direction until
2ll outstanding ciements of b, for which the current rc = 0, are
satisfied. The algorithm then shifts as far as poamible up and left
again and repeats the above procedure until all eiements of the
result magk are false, ia. 5 is complete.

The following varisbles ars used in the algorithm :

Variable deciaration
maskmasier : array (larow, Luacol] of booiean:
atr 2 array {1-nrow, l.acod] of data:
rrt : array (lrow, loacol] of Quarow;
ri, ri¢, laseriz : O.nrow;
& i Owcol;

Variable functions:
mask : he sesult mask, Tue values incicats ciemeants of 2

whichh have aot yet received the correct element of a.

ri, ¢i : row and column distances for the up-left move.
masker : a version of mask t0 process one column.
rit : a version of i ussd t0 process one column.

atr : a version of a used to prucess one column.

7 a version of rr used to process ons column.
laserie : the last value of rit.

The Parallel Pascal version of the heuristic algorithm is as
follows

b
mask = (rr <>0) or (re < 0%

while any(mask, 1 .2) do
begin { iterats uatil the permutation is complets }
i min(rr, 1, 2%
o m minre, 1, 2%
a = rotats(a, ri, a); | move up and left as far as possible }
rr e rr -
remre-ci
masiktr = (rr = 0) and (rc = O);
if any(masker, 1, 2) then | satisfy elements for the
current position }
atrwa
elss
begin {satisfy each element for the givea column}
where re= 0 do
Tt . prr
otherwise
7t 1= nrow;
ri¢ w= min(rre, 1, 2X
maskty = rrt = rit;
{ the next seven statements implement }
{ the scatement asr = rotate (@, ri2,0) }
{ but also take advantage of the previous shifts }
if ¢ <>0 then
begin
atr @
lastrit w= Q;
end:
atr = cotatel azr, rie - (asorit, O),
lastrit = ri;
end:
where masktr do {updats b for the curreat location of aj

This algorithm is bounded by n? iterstions, However, this
must be considered a looss bound since we currently do not kaow
a permutation which would require all n? iterations. The aigo-
rithm requires one iteration for a positive single element shift per-
mutation but n-1 operations for a negative shift since the rotate is
in the wrong direction.

Algorithm Cost

The cost of the raive algorithm is proportional to the aumber
of rotats operations, ie. 22 * (the cost of 2 ome element rotats
operation plus two comparison operations). The heuristic aigo-
sithm has two major cost components : the rotate operations as
noted befors and the (min) reduction functiont The reduction
‘upctions are used o compute the multi-element distance for
moves. [a the tables for the performance of the algorithm, both
the total number of elerment rotates and the total number of

reduction operations are given.

mmhﬁwmofammmdreducmnubom:ymm
and data size dependent. For the MPP, the cost of a reduction
function is in the order of 42 us Wwhereas tha single element rota-
tion of 32-bit data requires in the order of 32 us t0 96 us
depending upon the number of successive rotate operations. There-
fore, the reduction functions may represent a significant portion of
the computation cost. With careful low lsvel programming the
reduction operations can be overiapped with data rotats operations
such that their effective cost is in the order of 1.4 us. If the MPP
was augmented with a small amount of additional hardwars simi-
lar to that outlined in (3] then the reduction time could be
reduced to 1.5 us over half of which could could be overlapped
with data rotation operations. The heuristic algorithm aiways
requires less iterations and rotations thag the naive algarithms
however, the additional overhead of the reduction function may
make it lems efficient in some instances.

Permutation Resuits

The results of some permutations performed in order to
obtain rotated matrices of size 32 x 32 are given in Tabls [snd IL
These rotations are into mappings rather than permutations (ses
the matrix rotation section for detaiis) For comparison, the oaive
algorithm requires 1024 iterations, 1024 rotate operations and zero
reductions for any 32 x 32 matrix permutation or mapping. Table
[0 contains the resuits for perfect shuifle permutatioas for
different size matrices. The result for perfect and inverss sauifles
are ideatical for any matrix size.

TABLE E Cost for a near neighbor rotation on a
32 x 32 matrix centered at 16 16.

Matrix rotation mapping cost
Angle of rotation
itarations rotations reductions

0 0 0 0

15 124 562 340

l 30 62 620 748
| 45 508 837 1464
60 741 1022 2163

75 724 1019 2119

90 528 1007 1552

TABLE [I: Cost for a aear asighbor rotatioa on a

32 x 32 matrix centered at 1 1.

The perfect shuffle is an example of a permutation which
does not exhibit the locality property. The number of algorithm
iterations needed to impiement shuiles directly is (n — 1) How-
ever, the separability property of the two dimensional shudle is
oot being used. If we use the permutation algorithm to the per-
mutation in two stages, Le. first shuffle the rows and then shuffle
the columns, then n = 1 iterations are needed for each permuta-
tion, Therefore, the perfect shutfle when unplemcnted directly
has complexity O(n?), but when computad in two stages the algo-
rithm is much more effective and has O{(n) complexity. The
results of implementing the perfect shuffle as two separable
shuffies are also given in Table O Table [V shows the resuits of 2
random permutation; this demonstrates that the heuristic is not
effective when the mapping does not posses the locality property.

TABLE IV: Permutation cost for a2 random permutation.

Random Permutation
matrix size
iterations rotations reductions
32x 32 630 993 1851
LARGE ARRAYS

Frequently the data to be processed by 2 parallel processor
will be in the format of arrays which exceed the fixed range of
parallelism of the hardwars. Therefore, it is necesmary to have
special algorithms that will deal with large arrayy by breaking
them down into blocks manageabis by the hardware, without locs-
ing track of the relationships between different blocks.

One scheme, which is frequently used on ths MPP, is to par-
tition the large array into blocks which are coaveniently stored in
a four dimeansional array. The range of the first dimension of this
array specifies the number of blocks in each row of the large
matrix and the range of the d dimensi ifies the aumber
of blocks in each column. Given a conceptual 1arge masrix

mx : array {0.2.0.y] of brype;
which is to be stored in an array q of type
array (1-a. l.aw 1.3, 1-g] of btype:

Element 4/ of the large matrix is mapped into the array a as
specified by

madi,j] = a (14 div p, 1+ div g, 1+ mod p, 1+/ mod q]

Matrix rotation mapping cost For example, 2 512 x 256 matrix could be stared in eight blocks as
is of rotation
\ Ang teracioos | romsions | reductions la : array (1.41.2.1.128,1.128] of reak
15 232 303 662 This data structurs allows blocks to be manipulated indepen-
10 437 517 1266 dently. However, it still preserves the positional relationshipe of
50 779 329 292 To simplify the manipulation of large arrays on the MPP,
75 389 956 2631 two Parallel Pascal library functions (roraze and lshift have been
| 90 993 992 2945 developed. These functions take an array argument and two dis-
- TABLE I Cost for perfect shutlle permutations
for different matrix sizes.
Direct Shufile Cost Separable Shuifle Cost
mawix size
iterations rotations reductions iterations rotations reductions
414 9 12 22 | [6 6
$x8 49 56 134 : 14 14 14
| 16x16 225 240 646 , 30 30 30 }
2zx32 961 992 2822 | 62 62 62

.

placement arguments, like the primitive matrix rotate and shift
functions, however, in this case the array argumesnt is a four
dimensional array which is treated like a conceptually large
matrix.

Many programs can be converted to operate on biocked
ratber than conventional matrices by simply replacing all
instances of rotate and shift with lrotate and ishift respectively.
This is true for the permutation programs presented: however, in
the case of the heuristic permutation algorithm, this is not a very
eficient solution. A better method is 0 scan through the resuit
blocks and perform permutations on only the imput blocks that
contribute to the current result block being processed. This algo-
rithm is showa below.

var
lalb: array {1.o,l-x.l.arow,iacol] of daca;
{ric array (1-a,l.m.l.arow,l.acol} of indexs

fori=1tondo
for j=1tomdo
begin {process each resuit block|
rb = 1 + irli,j] div arow;
co = 1 + Idjj] div neol;
ro == 1 + {rfi,j] mod nrow; .
co = 1 + ldi,j] mod neols
for k=1 tondo
fori=1tomdo
begin {consider each input block}
masko = (rb = k) and (ch = ()
if any(maskb, 1, 2) then
where maskb do
153, j] 2= perm2 (la (k1] ,
ro, co, maskb);
end;
end;
ends

Perm?2 is the heuristic algorithm presented previously with
the modification that the initial mask valus is pessed as an argu-
ment. That is, only elements seiected by the mask ars permuted.
An additional speedup is achisved by this since ths heuristic
works much better when only a subset of eiements ars to be per-
muted.

Table V contains the resuits of the rotation mapping for the
zase where a 32 x 32 matrix is considersd to consist of 4 x 4 biocks
of 8 x 8 elements. The Large Perm results are from using the iro-
rate approaci and the perm2 results are for the block scanning
algorithm.

TABLE V: Comparison of perm2 aad largs blocked permutation
for a rotation centared at coordinates 1 1.

Perm2 Large perm.
angle of rotation
rotations reductions |rotations _reductions

‘| 0 13 3 0]

15 657 703 6768 7184

30 1050 1302 7616 10704

45 1389 1834 3352 13152

60 1702 2329 6896 11248

75 1931 2669 4112 5808

90 2086 2971 1836 1408

TABLE VI Comparison of perm2 and large biocked permutation
for a rotation centered at coordinates 16 16.

i Perm2 Large perm.
;angle of rotation

{ rotations comparisons |rotations comparisons
| 0 11188 134 3472 1552

i 15 850 374 7616 7552

| 30 1011 766 11520 15408

: 45 1448 1503 16544 25232

! 60 1858 2174 21328 13552

! 75 1846 151 25056 37760

90 1793 2001 22544 33120 |
MATRIX ROTATION

One application of the permutation function is matrix rota-
tion mapping. Thres rotation techniques are coasidered : aearest
neighbor, bilinear interpolation and bicubic interpolation. A row-
tion is specified by thres parameters : the location of the origin of
rotation (7 pco) and the rotation angle 8 . The starting point of ail
rotation aigorithms is the generation of the mapping matrices and
¢ from thess parameters.

Nearest neighbor

The nearest neighbor algorithm is simply an into mapping in
which a resuit elemeat is assigned the value of the nearest rotated
matrix eiement. [n this cass the new row and column coordinate
matrices, 7 and ¢, are defined as follows

rlij] = cound((co = j)sin(®@) + G = roleos(@) + rg)
cli.j] = round{ (j = coleos(8) + (i =rosin(@) + ¢4)

for ail i and ;; any values of the resuit which have near neighbors
outside the range of the input matrix are set to zero.

In performing a rotation, some clements of the resuit maerix
are rotated and some elemients are sslected which are outtide of
the input macrix. [our algorithm result elemeats for the latter
case are simpiy set to zero. Therefors we have a permutation in
which 2 subset of the input elements map into a subset of the
result elements; the size of thess subsets depends upon the angie
and origin of the rotation. The rotation is achieved by using the
valid eiements of r and ¢ with the heuristic permutation algo-
rithm.

Exampies of nearest neighbor rotation are showm in Fig. 1.
for an 8 x 8 matrix with the origin of rotation located at (1, 1)
For 2 small angle of rotation most of the results have valid
mapped values; however, the heuristic algorithm is very effective
for this cass because there is little movement of the data or 7~ 2nd
or are the same for many elements,

When ths romtion angle is large there is a lot of data resr-
rangement but only a few elementy are to be moved with the
rotation located at (1, 1). For the naive algorithm 49 iterations are
seeded for all rotations

Bilinear Interpolation

For the bilinear interpolation algorithm a result slement s
computed from a weighted sum of the four rotated input matrix
slements which surround it. There are two posnble approaches to
impiementing this scheme. First, we can compute four permuta-
tions each permutation acquiring one of the four aeighbors for
sach element. This is called multiple permutarion.

The second method is to perform ome permutation and thea
seex e locai ssighborhood of the rotated input matnx or e

[B4

W nqvw: M -

11 12 13 14 15 16 17 18
21 22 23 24 25 26 27 18
31 32 33 34 35 36 37 38
41 42 43 44 43 45 47 48
51 52 353 54 55 s6 57T S8
61 6 63 64 65 66 67 68

71072 73 4 15 16 17T 78
81 82 83 M 85 86 87 38

[nput Marwrix
ir ¢ 0 e o0 9 0
22 12 0 0 0 0 0 9@
2 W4 0 0 0 0 0
324 W15 0 0 0 0
4 315 28 26 17 Q0 Q 0
55 45 36 27 27 18 0 O
55 56 47 37 28 0 QO O
66 57 57 48 O 0 0 O

43 degree rotation

35 iterations

1 12 13 0 0 0 0 90
21 22 23 14 15 16 17 18
31 32 33 24 23 26 27 28
42 43 43 34 35 36 37 38
52 53 5S4 45 46 47 48 0
62 63 64 35 56 57 S8 O
7273 74 65 66 67 68 0
82 83 84 75 15 17 78 0
10 degree rotation
5 iterations
i1 0 0 0 0 0 0 0
2 0 0 0 9 ¢ 0 O
30 0 0 0 0 0 9
4 0 0 0 2 0 0 O
s 0 0 0 0 0 0 0
i 0 ¢ 0 0 0 0 O
17 0 0 0 ¢ 0 0 O
8 0 0 0 0 0 0 O
90 degree rotation
14 iterations

Figure 1. Sample Nearest Neighbor Rotations

other agear neighbors. The idea being that a local search will
require less computation than four complets rotations especially:
whea the aggle of rotation is large. The local aeighborhood of a.
single rotated matrix does oot contain 3 complets set of ths ear
neighbor elements of the input mawix some are lost dus to grid.
spacing differences. A complets set can be guarantesd, however, if’
we aiso includs the local neighborhood of a slightly perturbed..
rotated input macrix. This schems is called the doudle permuzation:
method; both rotatsd matrices can be computad simultansously
with a singls exscution of 3 slightly modified heuristic permuta-~
tion algorithm.

If we map a resuit element back to the input matrix it willi
be surrounded by four elements P1 - P4 as shown in Fig. 2. These
points are moved to the ing element aswciatsd with the:
result P and the interpoiation is thea computed in parallel

of
Pl o s P2
1 |
b3 |
* P
P3 = ¢ P4
Figure 2. Bilinear interpoiation

For the interpolation algorithms, the matrices, rp and cp,

contain ths actual locations of the rotated elements.

rp(i.j] =g = jXsin@) + G = roXcos8) + r,
ep(ijl1=(ji —coXcosd) + G =roXsin@) + co

forailiand /.
The coordinates of the near neighbors are as follows

Fup = [(co = jXsin8) + (i = roXcos8) +r,y

Cup = E(j - cokeos8) + (i = r X sind) = c, 1

Fhoem ®Tep + 1
Crigne F Caapp + 1

The interpolation fractions are:
rf WP =Ty

¢f =cp = Cup
Once the points P1 - P4 have been obtained the interpolated
result is computed as follows

Pa(l=cfrQU~=rfPP1+(l=rfPcfr*P2+
(A =cf PrfrP3+cfrf P4
The algorithm for the muitiple permuwcation approach is as
follows

begin

[R P
Ci™Cupn
b= coeflx * perm(a, 7, c); { value of top left neighbor |
CmCc+ 1]
b = coef2 * permia r) ~ b { valus of top right
geighbor }
rer+l;
b 1= coet3 * perm(a, r, ¢) + & { valus of bowom right
neighbor }
cme-1;
b = coefd ® perm(a, r, ¢) + & { value of bottom left
neighbor }
ends;
Perm is ths heuristic permutation function. The final result of
rotating a is stored in the matrix 6.
The doubls permuzation approach uses a modified permuta~
tion function which creates the following matrices

5 (i = o AL il
d {5y o o ALl i+ 1]

where
g is the original marrix
b is the rotated matrix
d is the shifted rotated matrix
r is the row coordiaate matrix
and
¢ is the column coordinate matrix

To avoid loosing the value of the center of rotation, whea the ori-
gin is located to the right of the matrix ceater, the matrix is
shifted left and, therefore, in the equation defining matrix d we
substitute a negative oae for the constant one.

The second step in the double permuzarion algorithm is a
iocal search performed onm both rotated and shifted rotated
matrices in order to find all the values of the elements needed for
the interpolation. The local search has 2 constant maximum cost
‘or any size matwix. [t therefore has ag advantage over the muitiple
permutations approach, 5incs every permutation in that approach
will become more costly as the matwix size increases.

For the worst case rotation angle (8 = 45), it has besn deter-
mined that a local search in 2 5 x 5 window is sufficient to yield
tge values of all the elements needed to perform a bilinear inter-
polation. The local search strategy implementad in our algurithm
is a spiral search. The elements ars sslected by compering their
row and column coordinates to thoss needsd. Once they match,
their vaiues can be obtained from the rotatsd matrix or from the
totated shifted matrix.

Cubic Interpolation

The cubic interpolation version of the rotation algorithm is a
simple extonsion of the bilinear interpolation schems. The first
step, finding the coordinate matrices 7 and ¢, is identicai to the bil-
inear interpolation case. After obtaining these matrices, the values
of sixteen neighbor points mwust be acquired. If the muliple per-
mutations approsch is used, then sixteen separats permutations
will be required. However, with the double permuzation schems
only a small extension of the bilinear algorithm is needed.

Instead of using a 5 x 5 window, which is the case when

t‘ourpomuluvetob.found.a7x7window'unecuurywﬁ.nd
sixteen points. However, since the elsment will have rotated in a
specific direction, the search window can be reduced t0a 7 X J
window. Each row of points needed will use a different 7 x 5
window of search.

Once all the values nseded are found, the bicubic intarpoia-
tion itself is dons by, firse, performing a cubic interpolatian for
each of the four rows and, chea, performing a fifth cubic interpo-
lation on the row points obtained.

As shown in Fig. 3, the refersnce point for ths cubic iaterpo-
lation computed in step one is P6. The Arst four cubic interpola-
tions ars performed to obrain points pe, pb, pc and pd. The fifth
ons yields the value of point P.

3 n »pP3 * pa
5 P6 fe——— spbP7T ¢ [.
| |
| *P
P9 ¢ P10 * +pec P11 * P12 *
P13 * P14 +pd P15 * P16 *
Figurs 3. Cubic Interpolation

Test Results

The local search performed in the double permugation aigo-
rithm has a constant maximum cost for any size matriz. For any
matrix the maximum cost is 100 rotaticns and 23 reductions for
the bilinear interpolation method and 552 rotations and 525 com-
parisons for the cubic interpolation.

The results for rotations using bilinear iaterpolation for a 32
2 32 matrix are given in Table VII and VTII for different centars
of rotation. The results of rotations applying cubic interpoiation
are given in Tables [X and X

TABLE VIE Cost of bilinear interpolated rotation
centered at coordinates 16 16

Double perm. Multipie perm.
angle of rotation
rotations reductions | rotations reductions |

0 1188 134 4092 649
15 350 374 2438 1416
30 1011 766 2544 2978
43 1448 1503 2N 5916
60 1358 1174 4084 8602
15 1846 2151 4081 8491
%0 1793 2001 4090 1920

TABLE VTIE Cost of bilinear interpolated rotation
centered at coordinates 1 1

Double perm. VMultipie perm.
angle of rotation
rotations reductions | rotations reductioas
0 13 3 4 6
15 657 703 1342 2705
30 1050 1302 2035 5093
45 1389 1834 2683 7238
60 1702 2329 2N 9230
15 1931 2669 3471 10627
90 2086 2971 3968 11780

TABLE TX: Coet of cubic intérpohud rotation
centered at coordinates 16 16

Double perm. Multipie perm.
angie of
rotations reductions | rocations reductions

0 1640 684 16363 2608

15 1302 374 10072 5757

30 1463 1266 10394 12021

45 1900 2003 13300 23668

60 2310 2674 16341 3437

75 2298 2851 16315 33928

90 2245 2501 16360 31664

TABLE X: Cost of cubic interpolated rotation
centered at coordinates 1 1

i Double perm. Multiple perm.

angle of rotation -

i rotations reductions

rotations reductions |

]

|
3 T 552 5 1 i)
1 15 | 1109 1203 l 7683 11132
; 30 | 1502 1802 9723 20589
: 45 i 1841 2334 | 11815 29104
: 50 s 3829 | 13793 37047
‘ 75 © 2383 3169 15316 42586
| % | 3538 unn | 15am2 s7oss

\m-

RESULTS USING THE MFPP Table XIL Cost for a near neighbor rotation on 2
128 1 128 matrix ceatered at 64 64,
The results for 32 x 32 matrices reported in this paper were

obtained with a Parallel Pascal Transiator which transiaces Paral- i Matrix rotation mapping cost j
lel Pascal into standard Pascal for program development {4]. Some ! Angle of rotati -
of these functions have also been run on the MPP; in this case for : rotations reductions
1 128 x 128 array. In Table XI and Table XII results for near ‘ 0 0)
aeighbor rotations are given and in tables XIII and XIV results for | 15 9183 3594
bilinear interpolation rotations are given. | 30 10446 7800
; 45 13589 15777
Table XL Cost for a near neighbor rotation on a ; 60 16378 23359
128 1 128 matrix centered at 1 1. ! 75 16375 24331
. ; 90 16319 16334
Marrix rotation mapping cost
Angls of rotation
| rotations reductions
: Q 0 0
i 15 5114 7506 Table XIII: Cost for a bilinear interpolation rotation on a
| 30 3495 14046 128 x 128 matrix centered at 1 1.
i 45 11103 20050
e e By Vi o g o
i s Angle of rotation
; 90 16256 32385 rotations eductions
[n Fige 4 and S comparisons are given between the 32 x 32 12 9(1)333 75?;
and 128 x 123 resuits. The cost shown is the ratio of the aumber 30 12689 14107
of shift operstions required by the heuristic algorithm over the 15 21246 20034
sumber of shifts required by the simple aigorithm for a single 60 26228 21192
permurtation (ie, n?). These figures show that thers is a very good s 30023 53893
correspondence between the the results for the different size 90 12614 12410
matricess That is, for the rotation aigorithm the improvement

achieved with the heuristic algorithm is a constant which which is
independent of matrix size.

1. 00000
.37%000 -
g . <0000 4
]
3
3
& -aa%m000 J
2
=3
k]
S 00000 -
E
3 37000 -
<
2
3
2
_3 - 270008
-
k-
2 by L
3 2= 44 ey R
2 L4700 [/ wm - 32 by 32 macrix centered at (1.1)
[& = 128 by 128 matrix centered at (1.1
14 A = 32 by 32 matrix centered at matrix center
{ S = 128 by 128 matrix centered at mawix ceater
1.90000 & ; * y - J
3 2 24 2] 53 72 34 £
Angle in Degrees

Fighn 4 Ratio of the aumber of rotations 0 A ° rotations for gear neigabor rotation With the
center of rotation at (1,1) and at the matrix ceater.

.

Table XIV: Cost for a bilinear interpolation rotation on a
128 1 128 matrix centared at 64 64

Macrix rotation mapping cost
Aagle of rotation
rotations reductions
Q 101 25
15 11510 3628
30 14648 7826
45 21556 15800
50 28282 23378
75 28763 24382
90 24676 16409
CONCLUSION

An effective heuristic algorithm for arbitrary permutations
and data mappings for mash connected SIMD processors has been
pressnted. This aigorithm is particularly suited to the following
conditions
1. Whea only a few elemsnts are to bs moved.

2. When many elemsnts share a similar motion, e.g. smail aagle

3. When large arrays are to be processed.

It is less suitable when the permutation or mapping is dense
and does not have the locality property. The effectiveness of this
algorithm over a naive algorithm depeads upon the system imple-
mentation parameters, and the size of the data to be manipulated.

An effective techniqus for matrix rotation interpolation has
been presented which involves a local search cheme. Excellent
results have been obtained especially for bicubic interpolation.

REFERENCES

1. K. E. Batcher, “Design of a Massiveiy Parallel Processor,”

1EEE Transactions on Computers C-2%9) pp. 336-840 (Sep-

tember 1981)

A, P. Reeves, “Parallel Pascal: An extended Pascal for Parallel

computers,” Jowrnal of Parallel and Distributed Computing

1 pp. 64-30 (1984),

3. A. P. Reeves, “On Efficient Global Informatioa Extraction
Methods For Parallel Processors.” Compwer Graphics and
[mage Processing 14 pp. 159-169 (1980}

4. A. P. Reeves, “Parallel Pascal Devejopment System,” Cornell
Uriversity Technical Report, (January, 1935).

=

3. 30008

t. 923080 <
2
2
5 1.4%000 4
3
g
&
2 1.37200
Qu
2
A
2
g 1. 10000
3
E
20
< .gz%000 o
2
3
3
3
2
-~ .TI0000
Ry
)
2
3
= e ey

a7s09g - 32 by 32 matrix ceatered at (1.1)
- 128 by 128 matrix centered at (1.1)
- 32 by 32 matrix centered at mATrixX center
| - 128 by 128 martrix centered at matrix ceater
3.00008 r - T - - -
9 2 1 -8 63 72 34 ED)
Angle in Degrees

Figure 5. Ratio of the gumber of rotations w0 n* rotations for biloear interpolation rotaticn
with the center of rotation at (1,1) and at the macTix center.

